Solvents for anthocyanidin chromatography

Two kinds of acidic solvents are used in anthocyanidin chromatography; the organic solvents (generally, butanolic or phenolic) and aqueous solvents (a mixture of water, mineral and orgianic acids). Although certain butanolic and phenolic solvents give a good "spread" of R_{F}, values for certain anthocyanidins, the spread cannot be fully exploited in identification because the anthocyanidins often fade rapidly and small amounts of anthocyanidins are not detected.

Anthocyanidins are generally stable in aqueous acidic solvents, but there are few such solvents satisfactory for anthocyanidin identification. In Forestal solvent, it is very difficult to differentiate peonidin from pelargonidin, petunidin from cyanidin, and occasionally, cyanidin from malvidin. The formic acid solvent of Harborne ${ }^{1}$ (a modification of the solvent originally proposed by ENDo, as quoted by ABE AND HAYASHI ${ }^{2}$), although useful, gives a poor spread between cyanidin and malvidin, and malvidin and peonidin. The acetic acid-hydrochloric acid-water ($5: 1: 5$) solvent of Abe and Hayashi ${ }^{2}$ is not satisfactory with partially hydrolyzed anthocyanins because the R_{F} value ranges of anthocyanins and anthocyanidins overlap.

Because of the shortcomings of these solvents, new solvents were added. The composition of these and some stanclard solvents is listed in Table I. The range and average of R_{F} values of standard anthocyanidins in the solvents are listed in Table II. The first line in each column gives the range of R_{F} values obtained in several runs. The number of runs is given in brackets. One sample of peonidin in Harborne's formic acid solvent showed a pink fluorescent contaminant, probably an unknown anthocyanidin, whose R_{F} values are included.

The iso-PrOH solvent of Abe and Hayashi ${ }^{2}$ is excellent for differentiating peonidin from pelargonidin. Anthocyanidins, in this solvent, fade quite rapidly. Also, it cannot be used as a general solvent for anthocyanidin chromatography because malvidin and petunidin and also cyanidin and peonidin resolve at about the same chromatographic loci.

TABIE I
COMPOSITION OF SOLVENTS USED FOR ANTHOCYANIDIN CHROMATOGRAPHY

Abbreviation Composition a	Development period (h)

Forestal
FA-Harborne
$\mathrm{FA}-4 \sim \mathrm{HCl}$
$\mathrm{HAc}-\mathrm{HCl}^{\mathrm{b}}$
Fropionic
3:1:8
5:1:5
Iso-PrOH ${ }^{4}$
$\mathrm{Aq}-\mathrm{HCl}^{\mathrm{b}}$
BAW

$\mathrm{HAC}-\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ (30:3: 10$)$, S	16
$\mathrm{HCOOH}-\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}(5: 2: 3)$, S	$7 \cdot 5$
H-1COOH-4 ${ }^{\text {N HCl }}$ ($2: 1$), S	7.5
$\mathrm{HAc}-\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}(15: 3: 82)$, S	6
PAc-HCOOH-HCl- $\mathrm{H}_{2} \mathrm{O}$ (2:5: $5: 6$), U	10
$\mathrm{HAc}-\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}(3: 1: 8), \mathrm{S}$	8
$\mathrm{HAC}-\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}(5: 1: 5), \mathrm{S}$	1 I
$i-\mathrm{PrOH}-5 \% \mathrm{HCl}(55: 45), \mathrm{S}$	20
$\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}(3: 97)$, S	4
$n-\mathrm{BuOH}-\mathrm{HAc}-\mathrm{H}_{2} \mathrm{O}(4: 1: 5), \mathrm{U}$	13

[^0]TABLE II
Ranges and average of $\boldsymbol{R}_{\boldsymbol{F}}$ Values of authentic anthocyanidins ${ }^{\mathbf{a}, \mathrm{b}}$

Propionic	$\begin{aligned} & 45-50 \\ & (14) \\ & 46 \end{aligned}$	$\begin{aligned} & 39-43 \\ & (8) \\ & 40 \end{aligned}$	8	$\begin{aligned} & 33-3^{8} \\ & (9) \\ & 35 \end{aligned}$	$\begin{aligned} & 28-32 \\ & (13) \\ & 30 \end{aligned}$	$\begin{aligned} & 24-29 \\ & \text { (I2) } \\ & 26 \end{aligned}$	$\begin{aligned} & 20 \\ & (3) \\ & 20 \end{aligned}$	65-67 (3) 65	5ะ-53 (3) 52
Iso- $\mathrm{Pr}_{5} \mathrm{OH}$	54-73 (I3) 68	$45-52$ (6) 50		$\begin{aligned} & \mathbf{h} \\ & .33 \end{aligned}$	$\begin{aligned} & 45-\frac{42}{2} \\ & (12) \\ & 48 \end{aligned}$	$\begin{aligned} & \text { h } \\ & 33 \end{aligned}$			
5:1:5	49			38	3^{8}	3 I			
$\mathrm{Aq}-\mathrm{HCl}$	$\begin{gathered} 4 \cdot 5-5 \\ (2) \\ 5 \end{gathered}$	$\begin{gathered} 2.5-3 \\ (20) \\ 3 \end{gathered}$		$\begin{aligned} & 2-2.25 \\ & (3) \\ & 2 \end{aligned}$	$\begin{aligned} & 2.5-3 \\ & (5)^{2.5} \end{aligned}$	$\begin{aligned} & 2-2.5 \\ & (3) \\ & 2 \end{aligned}$	I. 5^{1}	7	4.25
BAW	$80-82$ (2) 64	$\begin{aligned} & 6 I-68 \\ & (2) \\ & 64 \end{aligned}$			52	60	46		
s In general, the R_{P} values of each anthocyanidin in each solvent are in three rows; in the first row, the range of R_{p} values; the numbe in parentheses, in the second row; the average in the third row. ${ }^{b}$ The chromatography was carried out at $20 \pm 1^{\circ}$. e Provided by Dr. R. M. Acheson, University of Oxford, England. d Provided by Dr. J. B. Harborne, John Innes Horticultural Institution, Hertfordshire, England, (see g, h, and i). e OH at 3-position absent ${ }^{\varepsilon} R_{F}$ values of the fluorescent pink contaminant. g The malvidin and petunidin as a mixture. ${ }^{h}$ Malvidin and petunidin do not separate in the iso- PrOH solvent. ${ }^{1}$ Delphinidin with a fluorescent pink contaminant at $R_{F} 0.04$ in aq. HCl .									

The formic acid-4 $N \mathrm{HCl}$ (2: x) solvent developed in this laboratory is a good one for routine use and has a greater spread in $\boldsymbol{R}_{\boldsymbol{F}}$ values than the formic acid solvent of Harborne ${ }^{1}$.

The use of the $\mathrm{HAc}-\mathrm{HCl}$ solvent originally proposed by Harborne ${ }^{1}$ for anthocyanins was extended to anthocyanidins. In studying hydrolysis and stability of anthocyanins, anthocyanins and anthocyanidins are most usefully run in one solvent. The HAc- HCl solvent is excellent for this purpose and has been extensively used. R_{F} values of anthocyanins are generally above 0.20 and those of anthocyanidins below 0.20 . The solvent gives sharp resolution and minimal variation in R_{F} values. The HAc- HICl solvent, like the iso-PrOH solvent, differentiates pelargonidin and peonidin.
R_{F} values of anthocyanidins in a given solvent are usually predictable on the basis of structure. Although the basic constituents of the $\mathrm{HAc}-\mathrm{HCl}$ solvent are the same as those of Forestal solvent, the order of R_{F} values of malvidin and cyanidin, as found in Forestal solvent, is reversed in the $\mathrm{HAc}-\mathrm{HCl}$ solvent. This is particularly useful in identifying malvidin.

The 3: I: 8 solvent of Abe and Hayashi ${ }^{2}$ usually gives good results. Although it is useful in characterizing anthocyanins, it is strongly acidic and may partially hydrolyze these compounds. The order of R_{F} values for malvidin and cyanidin in Forestal solvent is reversed in this solvent. $\boldsymbol{R}_{\boldsymbol{F}}$ value ranges for anthocyanidins are much less in this solvent than in Forestal.

The new propionic acid solvent is an excellent solvent. There is a uniform spread of approximately $0.05 R_{F}$ value units between the common anthocyanidins and R_{F} values are conveniently in multiples of 5 .

The $x \%$ aqueous HCl solvent of Harborne ${ }^{1}$ is very good for the purification and characterization of anthocyanins but R_{F} values for anthocyanidins are very low. Nonetheless, it is useful in studying the products of partial hydrolysis of anthocyanins. The colors of anthocyanins and anthocyanidins, both in visible and ultraviolet light, are very sharp in this solvent.

The authors are grateful for gifts of delphinidin, peonidin and pelargonidin and a mixture of malvidin and petunidin to Dr. J. B. Harborne and of cyanidin to Dr. R. M. Acheson.
Faculty of Forestry and Division of Plant Science, University of British Columbia, Vancouver (Canada)

D. B. Mullick
V. C. Brink

[^1]Received November 17th, I966
T. Chromatog., 28 (1967) 471-474

[^0]: $n \mathbf{S}=$ Single phase; $U=$ upper phase.
 ${ }^{6}$ Anthocyanin solvent of Harborne ${ }^{1}$ extended to anthocyanidins.

 - $\mathbf{P A}=$ propionic acid.
 d Isopropyl alcohol solvent of Hayashis, Abe and Hayashi.

[^1]: I J. B. Harborne, in M. Lederer (Editor), Chyomatographic Revieves, Vol. i, Elsevier, Amsterdam, 1959, p. 209.
 2 Y. Abe and K. Hayashi, Botan. Mag. (Tokyo), 69 (1956) 577.
 3 K. Hayashi, Pharmazie, 12 (1957) 245.

